
 Deliverable D1.3

 1

Funding Scheme: THEME [ICT-2007.8.0] [FET Open]

Paving the Way for Future Emerging DNA-based Technologies:

Computer-Aided Design and Manufacturing of DNA libraries

Grant Agreement number: 265505

Project acronym: CADMAD

Deliverable number: D1.3

Deliverable name: Report on the features of version 1.0 CADMAD GUI development

Contractual Date1 of Delivery to the CEC: M24

Actual Date of Delivery to the CEC: M24

Author(s)2: Jonathan Blakes, Natalio Krasnogor

Participant(s)3: UNOTT

Work Package: WP1

Security4: Pub

Nature5: R

Version6: 1.0

 Total number of pages: 10

1 As specified in Annex I
2 i.e. name of the person(s) responsible for the preparation of the document
3 Short name of partner(s) responsible for the deliverable
4 The Technical Annex of the project provides a list of deliverables to be submitted, with the following classification level:

Pub - Public document; No restrictions on access; may be given freely to any interested party or published openly on the web, provided the author and source are
mentioned and the content is not altered.
Rest - Restricted circulation list (including Commission Project Officer). This circulation list will be designated in agreement with the source project. May not be given to
persons or bodies not listed.
Int - Internal circulation within project (and Commission Project Officer). The deliverable cannot be disclosed to any third party outside the project.

5 R (Report): the deliverables consists in a document reporting the results of interest.
 P (Prototype): the deliverable is actually consisting in a physical prototype, whose location and functionalities are described in the submitted document (however, the

actual deliverable must be available for inspection and/or audit in the indicated place)
 D (Demonstrator): the deliverable is a software program, a device or a physical set-up aimed to demonstrate a concept and described in the submitted document

(however, the actual deliverable must be available for inspection and/or audit in the indicated place)
 O (Other): the deliverable described in the submitted document can not be classified as one of the above (e.g. specification, tools, tests, etc.)
6 Two digits separated by a dot:

The first digit is 0 for draft, 1 for project approved document, 2 or more for further revisions (e.g. in case of non acceptance by the Commission) requiring explicit
approval by the project itself;
The second digit is a number indicating minor changes to the document not requiring an explicit approval by the project.

 Deliverable D1.3

 2

Abstract

We have designed and implemented a domain specific programming language for combinatorial DNA Libraries
design (DNALD) that is supported by a graphical user interface (GUI) the DNA Library Designer integrated
development environment (IDE) for DNALD.

In this reporting period we provide a summary of work on updates to the existing functionality of the IDE as well as
details of the addition of new language-based features to the GUI presented in deliverable 1.3 (this reporting
period). We also present a new graph-based visualisation that completes work on D1.3 but also establishes the
basis for the deliverables to be done during the next review period, namely D1.4. We describe in detail a novel
compact data structure that is at the core of 3 critical CADMAD activities: (I) DNALD expression/library
visualisation (D1.3, current reporting period), visual programming interface vDNALD (D1.4, next reporting period),
(II) deriving library construction plans from DNALD library designs (D2.5 led by WEIZ, current reporting period),
and (III) the reverse parsing of unstructured sequences into DNALD libraries in D1.5 (led by Nottingham, next
reporting period).

Keywords7:

DNA Library Designer IDE, GUI, DNALD, vDNALD

DNA Library Designer’s main functions and capabilities:

During this reporting period we have worked on improving the software engineering, language
features, the IDE and the data structures.

7 Keywords that would serve as search label for information retrieval

 Deliverable D1.3

 3

1. Software engineering

This section briefly describes the architecture of the software that constitutes deliverables D1.3 and D1.4.

DNA Library Designer is a sophisticated integrated development environment (IDE) for DNALD that enables
biologists to design and explore combinatorial DNA sequence libraries with the support of a real programming
editor. The IDE is an Eclipse-based application developed on top of the software stack shown in figure 1 that can
be installed alongside other plugins in an existing Eclipse installation or used as a standalone product on Linux,
Mac and Windows platforms.

Figure 1: Components of DNA Library Designer. The diagram should be viewed as a stack where each layer

above is dependent on functionality provided by the layer below.

Eclipse provides the plugin framework and Workbench UI for our Rich Client Platform product, including project
management, text search and file comparison features. Xtext is an open source domain-specific language project
which we use to handle parsing and semantic model-backed editing of DNALD files. Guava is a Google library for
the Java language providing high quality basic data structures, the use of which contributes significantly to the
readability and performance of our code. We use JGraphT for some graph algorithms related to library evaluation
and visualisation, and Draw2D/Zest for drawing and graph layout respectively.

A major component of the work that was carried out during this reporting period was to re-factor and re-structure
the “under-the-hood” architecture of the DNALD IDE. We enhanced our underlying datamodel and associated
evaluation steps that enable a more meaningful visualisation and faster computation of output DNA sequences.
These key software engineering innovations for this reporting period have made the product more robust and,
ultimately, more scalable. In this context, scale refers to the potential range of problem-specific plug-ins that could
be added to the system. In turn, this helps ensure that DNALD will remain future-proof.

2. New GUI features

Here we report additional GUI features of D1.3 linked to the language.

DNA Library Designer fully leverages Xtext and the Eclipse to provide DNA combinatorial library programmers the
many features they would be familiar with from other IDEs: syntax/reference highlighting and validation, code
completion, source navigation, outline views and rename refactoring, find-replace (with regular expressions) and a
workspace model of project and file management with full text searching (summarised in Figure 2). Please note
that as some were also described during the previous reporting period (deliverable 1.2), we focus only on those
that have been updated and any new features we may have introduced (marked with a red box in Figure 2). These
are described in what follows.

 Deliverable D1.3

 4

Figure 2: Gallery of current DNA Library Designer features. Updates outlined in red.

Library navigation Reference highlighting (reuse)

evaluation

constraints

syntax

errors

error

navigation

Validation

resolve names
correct indices

Quick fix suggestions

Searching across projects

match

patterns

Find and replace within file

Compare differences between files/versions

Wizar
d for
getting
started

Wizard for getting started

 Deliverable D1.3

 5

Validation: Validation has been substantially improved. Syntactic validation (determined by the Xtext grammar
used to generate the parser) has been customised to provide less generic and more informative error messages.
For instance, the message “no viable alternative at input ’}”’ is translated into “library must contain an outputs
section” when that can be determined to be the cause. More inputs expressions are now valid, including
subsequences and reverse complements of sequences and references to other inputs.

Semantic validation now occurs twice: once when the DNALD is parsed, based on values and relationships that
are clear from the textual description (e.g. invalid nucleotide codes, duplicated codons or incomputable codon
usages) and a second time when the DNALD file has been evaluated because more information is available at
that point. This allows us to catch more subtle errors such as indices that are out-of-range for computed
sequences, and report these as errors and warnings overlaid on the DNALD code. Cyclic dependencies between
definitions prompt errors such as “Expression creates cyclic dependency: A -> B -> C -> A” for each definition in
the cycle. All such definitions are subsequently ignored by the evaluator so that the remaining definitions may still
be evaluated and validated. That is, we have introduced a kind of greedy partial evaluation that allows the
combinatorial DNA library programmer to make some small errors while programming while still being able to see
the partial results of his library design.

Assertions: We have extended the DNALD language as presented in the previous reporting period with the ability
to write assertions that are also checked as part of the validation-evaluation-validation process described above,
and reported in the GUI. Assertions are appended to definitions by the ‘is’ keyword and another DNALD
expression that should evaluate to the same set of sequences as the definition it is bound to. False assertions
raise the warning “Evaluation does not match assertion” on the defining expression, accompanied by an
explanation of the difference between what was expected and the actual result. The availability of assertions serve
three complementary purposes: (a) it enables the definition of complex libraries that have clear check-points for
correctness, (b) it allows for the expression of complex libraries via two different mechanisms (the expression &
the assertion) in such a way that one can disambiguate and clarify the other and (c) it helps teams of combinatorial
DNA library programmers to communicate expectations about libraries outputs. In addition to using assertions for
documentation, reference highlighting has been improved such that hovering over a name now shows a tooltip
containing a /** documentation string */ (if present for that definition) with which designers can include comments
about the various DNA parts in use in free language thus complementing the assertions.

Assistance: The New DNALD Project wizard is available from the File > New submenu. The resultant project
contains a simple combinatorial DNA library that new users can easily adapt to bootstrap their own libraries. A
brief DNALD tutorial is also available in an example project, and from the download page. It emphasises the ability
of DNALD to create and work with sets over single sequences, by demonstrating the set operations: union (+),
intersection, difference and symmetric difference, using assertions.

Figure 3: The new DNALD tutorial library, demonstrating operations on sets of sequences using assertions.

http://gandalf.cs.nott.ac.uk/dnald/

 Deliverable D1.3

 6

3. Visualisations

This section presents work that completes D1.3 but also establishes the basis for the deliverables D1.4 and D1.5
to be done during the next review period.

Per-sequence visualisation of DNA
libraries was already integrated into DNA
Library Designer as a view linked to the
currently edited DNALD file. It was
observed that as the complexity of the
library definition increased, memory use
became an issue and visualization became
cluttered. This prompted us to improve on
both the visualization and internal data
structures so they could better handle
more complex libraries. We have rewritten
this visualisation to make it faster and
extensible. Figure 4 shows the improved
Library view visualisation. Each sequence
is visualised a series of colour-coded
blocks, where colour relates reused
subsequences to their originating
sequences and overlaid textual
annotations, discernible when zoomed in,
describe the exact start and end positions
constituting the reused subsequence. The
unit length can now be adjusted as a
means of handling libraries with large
variations in fragment sizes.

New visualisation and datastructure:

To better visualize the degrees of freedom that are available to a combinatorial DNA library programmer, we have
developed a new data structure with an associated plugin that adds a new graph-based view, as shown in figure 5.
At present this view renders the sequences of the library outputs as a graph of its consecutive subsequences.
Each path from the 5’ node to the 3’ node corresponds to one output. Figure 5 demonstrates that there is
equivalence between the DNALD expression defining the sequences contained within the graph and the structure
of the graph itself. However, the graph is not derived from the parsed syntax tree of the DNALD expression but
from the subsequences of the datamodel objects resulting from the library evaluation. Consequently, if the library
design had described the same set of the sequences using the same subsequences but in 27 separate non-
combinatorial definitions, as opposed to just 1 in the example, then the graph would be the same. In such cases
this graph-based visualization highlights a potential refactoring that would improve scalability of the library design
for additional combinations of any of the existing degrees of freedom.

Figure 4: The Library View showing the inputs (natural fragments,
top), short synthetic intermediates (middle) and 36 computed
output sequences of the Oct4 library produced by UKB.

 Deliverable D1.3

 7

F
ig

u
re

 5
:

R
en

de
rin

g
gr

ap
h-

ba
se

d
lib

ra
ry

 v
is

ua
lis

at
io

ns
 in

 th
e

G
U

I.
S

ub
fig

ur
e

A
 s

ho
w

s
th

e
gr

ap
h

of
 a

ll
ou

tp
ut

s
in

 a
 D

N
A

 li
br

ar
y.

 S
ub

fig
ur

e
B

 s
ho

w
s

th
e

sa
m

e
gr

ap
h

re
nd

er
ed

 u
si

ng
 G

ra
ph

vi
z

ba
se

d
on

 th
e

D
O

T
 la

ng
ua

ge
 a

nd
 la

yo
ut

 p
ro

gr
am

. D
O

T
 u

se
s

a
so

ph
is

tic
at

ed
 h

ie
ra

rc
hi

ca
l g

ra
ph

 la
yo

ut
 a

lg
or

ith
m

 to
 d

is
pl

ay
 h

ig
hl

y
co

nn
ec

te
d

di
re

ct
ed

 g
ra

ph
s

in
 a

 v
is

ua
lly

 a
cc

es
si

bl
e

m
an

ne
r.

 T
o

re
pl

ic
at

e
th

is
 h

ig
h

qu
al

ity
 la

yo
ut

 in
 th

e
G

U
I w

e
ha

ve
 u

til
is

ed
 a

 c
on

tr
ib

ut
ed

 S
ug

iy
am

a
gr

ap
h

la
yo

ut
 a

lg
or

ith
m

 fo
r

th
e

Z
es

t t
oo

lk
it

on
 w

hi
ch

 th
e

vi
ew

 is
 b

as
ed

. S
ub

fig
ur

e
C

 s
ho

w
s

th
e

D
N

A
LD

 e
xp

re
ss

io
n

de
fin

in
g

th
e

lib
ra

ry
 (

de
pe

nd
en

t d
ef

in
iti

on
s

n
ot

 s
ho

w
n)

. B
ec

au
se

 a
 s

in
gl

e
de

fin
iti

on

yi
el

ds
 th

e
to

ta
l s

et
 o

f l
ib

ra
ry

 o
ut

pu
ts

 th
e

st
ru

ct
ur

e
of

 th
e

co
m

pu
te

d
gr

ap
h

co
rr

es
po

nd
s

ex
ac

tly
 th

e
st

ru
ct

ur
e

of
 th

e
ex

pr
es

si
on

.

a
z
u
r
i
n
_
L
i
b
r
a
r
y

:
=

'
A
A
G
G
T
'

N
c
o
I

a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
1
2
:
2
6
9
]

(
a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
2
8
5
:
3
3
8
]

+

'
G
G
A
T
T
A
G
A
C
A
A
A
G
A
C
'

+

'
G
G
C
C
T
G
G
A
C
A
A
A
G
A
C
'
)

a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
2
8
5
:
3
3
8
]

(
a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
3
3
9
:
3
5
3
]

+

'
G
G
A
G
A
G
A
A
A
G
A
T
A
G
C
'

+

'
G
G
C
G
A
G
A
A
A
G
A
C
A
G
C
'
)

a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
3
5
4
:
3
7
1
]

(
a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
3
8
7
:
4
5
8
]

+

'
A
A
G
C
T
G
A
A
A
G
A
G
G
G
C
'

+

'
A
A
G
T
T
A
A
A
A
G
A
G
G
G
G
'
)

a
z
u
r
i
n
_
P
C
R
_
p
r
o
d
u
c
t
[
3
8
7
:
4
5
8
]

H
i
s
_
t
a
g

s
t
o
p
_
c
o
d
o
n

E
c
o
R
I

'
A
C
C
T
T
'

A

B

C

 Deliverable D1.3

 8

The graph is computed from the evaluated DNALD library and is the dual of the minimal Directed Acyclic Word
Graph (DAWG, described below and in figure 6) of the output sequences (words) where the letters are
subsequences of references to DNALD definitions (typically, but not limited to existing inputs, elsewhere described
as natural fragments). Where subsequences are shared between sequences and the prefixes/suffixes surrounding
them do not preclude it, both sequences will share the subsequence node. DAWGs are typically used to store
lexicons in spell checkers as they offer compact storage and faster retrieval for a given prefix [1]. Here they are
repurposed to elucidate the relationships between arbitrary sets of sequences build from DNALD expressions.

Figure 6 outlines the process used to obtain the DAWG dual. We first compute the DAWG based on our
implementation of a linear time minimality preserving word insertion algorithm [2] for minimal DAWGs (fewest
possible nodes and edges). Because all of the sequences are inserted in this way the result is the minimal DAWG.
The edges of the DAWG are labelled with a letter of the word being inserted. The unlabelled nodes serve as
sources or targets for additional edges but hold no information themselves. Labelled edges and unlabelled are not
well-suited for visual interpretation so we compute the “dual” graph where edges of the DAWG become labelled
nodes and the correct connectivity is maintained by adding the appropriate directed edges (green arrow in figure
6). Depending on the library this process can add duplicate nodes and edges to the dual, as is seen in the
“unsquashed” dual in figure 6 (it does not happen for the azurin_library derived dual shown in figure 5). We use
the term “squashing” to describe the sub-algorithm for removing the duplicate nodes (orange arrow in figure 6)
because when viewed left-to-right as in the GUI, the height of the graph decreases. We confirm that the
sequences contained in the squashed dual are the same as those used to create the initial DAWG, and it is
rendered in the GUI as the graph-based visualisation using the Zest Eclipse plugin.

DAWG

(67 nodes, 91 edges)

unsquashed dual
(92 nodes, 118 edges)

squashed dual
(72 nodes, 96
edges)

1

("squashing")
removal of duplicate nodes

created in DAWG to dual
conversion

2

Figure 6: DAWG, unsquashed dual, squashed dual, and squashed and squeezed dual for the

36 outputs of UKB Oct4 library

squashed and squeezed dual
(40 nodes, 64 edges)

 Deliverable D1.3

 9

Note that each node of the squashed DAWG dual contains a subsequence object containing a single reference
object. The graph can be further reduced by “squeezing” (red arrow in figure 6) any consecutive non-branching
nodes into a single node with a subsequence object containing the references of each squeezed node in order.
Squeezing produces a smaller graph and therefore a simpler visualization of the same data.

Further applications of the datastructure:

The correspondence between the DAWG dual and combinatorial DNALD expressions makes it an ideal basis for a
visual programming interface. The nodes and edges of the graph provide potential interaction surfaces, such that
edges could be deleted to remove certain combinations, clicking an edge could insert a new node between two
existing, nodes could be rearranged or their contents changed.

For the planning of library construction in WP2, a minimal graph with nodes corresponding to natural or synthetic
fragments, derived from a human optimized combinatorial design constitutes a significant improvement on even
our previous origin-preserving data model, as the edges of the graph can be considered potential Y operations
affecting a subset of target sequences.

An operation analogous to squeezing can be applied to an actual DAWG to yield a compressed DAWG, which is
the most memory efficient data structure for holding a set of strings in memory without additional data compression
techniques. Although this offers a possible optimisation for our system it cannot be exploited as we would lose
important information as to the origin of subsequences, even with a backing array accessed through perfect
hashing [3].

Lastly, our DAWG and dual implementations are generic, meaning that the type of the object used as
edges/nodes, in the DAWG/dual respectively, can vary but must be specified for the Java compiler. This allows us
to create duals of strings as easily as with subsequence objects, i.e. with unstructured DNA sequences, a
squeezed graph of the “bases” that can be leveraged for the final reverse parsing task of WP1. Figure 7 shows
how such a graph reveals subsequence structures comparable to that extracted from a library design.

Figure 7: Comparison of the figure 5 azurin_library squeezed DAWG dual (left) and the squeezed “bases” DAWG
dual of the same DNA sequences (right). There is a correspondence between the four longer subsequences in
right graph to the constant portions of the left graph, and similarly the intervening variable sections.

 Deliverable D1.3

 10

4. Conclusions

This report has outlined the following contributions: improvements to reliability and scalability of our software and
user’s designs through software engineering, validation and inline testing with assertions; improvements to our
existing visualisation and the development of a new graph-based visualisation. The graph-based aspects of this
work can be applied more broadly to other objectives in this work package and others.

The graph for the set of sequences defined by a single combinatorial expression is the correct level of abstract on
which to build the vDNALD visual programming interface, the next task of WP1. The squeezed graph of an
arbitrary set of DNA sequences can reveal structural similarities that can be exploited for the reverse parsing task
of WP1, and for the improved planning of synthetic sequences in library construction.

The graph of all library outputs, while sometimes difficult to comprehend visually (as in figure 6), has proved a
useful optimisation tool for the planning of library construction (described in detail in deliverable 2.4), which
realises an internal goal to exploiting information present in the DNA library design to simplify the planning stages
of library construction and improve DNA reuse therein. With sufficient attention to scalability it may even be
possible to compute a viable construction plan as part of the library evaluation and thereby incorporate into the
GUI a cost assessment that could guide users when designing libraries.

5. References

1. Appel, A. W. & Jacobson, G. J. The world’s fastest Scrabble program. Communications of the ACM 31, 572–578 (1988).

2. K.N. Sgarbas et al. Optimal insertion in deterministic DAWGs. Theoretical Computer Science 301 (2003) 103-117.

3. Lucchesi, C. L. & Kowaltowski, T. Applications of Finite Automata Representing Large Vocabularies. Technical Report,
Department of Computer Science, University of Campinas, SP, Brazil (1992).

6. Abbreviations

List all abbreviations used in the document arranged alphabetically.

DAWG Directed Acyclic Word Graph

DNALD DNA Library Design language

GUI Graphical User Interface

IDE Integrated Development Environment

WP Work Package

