Deliverable D3.5

SEVENTH FRAMEWORK
PROGRAMME

Funding Scheme: THEME [ICT-2007.8.0] [FET Open]

Paving the Way for Future Emerging DNA-based Technologies:

Computer-Aided Design and Manufacturing of DNA libraries
Grant Agreement number: 265505
Project acronym: CADMAD

Deliverable number: D3.5

Deliverable name: RoboEase source code

Contractual Date' of Delivery to the CEC: M24 (not specified in Annex I)

Actual Date of Delivery to the CEC: M24

Author(s)?: Ellis Whitehead, Joerg Stelling

Participant(s)3: ETHZ

Work Package: WP3

Security*: Int

Natures: R

Version®: 0.0

Total number of pages:

As specified in Annex |
i.e. name of the person(s) responsible for the preparation of the document
Short name of partner(s) responsible for the deliverable
The Technical Annex of the project provides a list of deliverables to be submitted, with the following classification level:
Pub - Public document; No restrictions on access; may be given freely to any interested party or published openly on the web, provided the author and source are
mentioned and the content is not altered.
Rest - Restricted circulation list (including Commission Project Officer). This circulation list will be designated in agreement with the source project. May not be given to
persons or bodies not listed.
Int - Internal circulation within project (and Commission Project Officer). The deliverable cannot be disclosed to any third party outside the project.
5 R (Report): the deliverables consists in a document reporting the results of interest.
P (Prototype): the deliverable is actually consisting in a physical prototype, whose location and functionalities are described in the submitted document (however, the
actual deliverable must be available for inspection and/or audit in the indicated place)
D (Demonstrator): the deliverable is a software program, a device or a physical set-up aimed to demonstrate a concept and described in the submitted document
(however, the actual deliverable must be available for inspection and/or audit in the indicated place)
O (Other): the deliverable described in the submitted document can not be classified as one of the above (e.g. specification, tools, tests, etc.)
& Two digits separated by a dot:
The first digit is O for draft, 1 for project approved document, 2 or more for further revisions (e.g. in case of non acceptance by the Commission) requiring explicit
approval by the project itself;
The second digit is a number indicating minor changes to the document not requiring an explicit approval by the project.

ENEE I O

Deliverable D3.5

SEVENTH FRAMEWORK
PROGRAMME

Abstract

We have created a software system for high-level control of a liquid handling robot. Details of the implementation
are described, and we consider the results with respect to abstraction, flexibility, feedback handling,
expressiveness, intelligence, and portability. The source code of the implementation is available internally and it
will be made open-source in a procedure to be determined by the project partners.

Keywords?:

Liquid handling robot, RoboEase, programming language

1. Introduction

Aim / Objectives
The aim of the work in T3.3 was the developmerd bfgh-level programming language for liquid-handlrobots.
Specifically, the language was to be designed ss¢gss the following properties.

High-level: Most tasks we want to perform in the laboratayg(, for DNA library construction) involve multgl
steps, such that in addition to low-level commangswant to be able to have high-level commandsh(sis “do
PCR”) which may compile down to many low-level coamds.

Flexible: The system should support a wide range of tdeksnstance, a range of different protocols in ewailar
biology and biochemistry.

Feedback handling: we would like to support fully automated feedbémbps, whereby the next step is determined
by measurements performed in the previous stepsable error correction in real-time.

Expressive: the language should be expressive enough thdatgers avoid repeating themselves too much by
supporting language constructs such as variabkbsoaps.

Intelligent: the commands should handle as much complexitigegscan, so that the user does not need to, for
instance, specify all detailed parameters in a-egkl script. This also means that the system Ishpperform
validation of the scripts to make sure that the w@mds can be plausibly executed.

Portable: it should be possible to take a script from atednd execute it in another lab with a differertat.

State of the Art
None of the existing languages for programmingitiuandling robots meets all (or even a majoritidhe specification
criteria listed above for the following reasons:

Not high-level: Few languages offer support for multi-step comdsain a convenient manner (the original
RoboEase developed at Weizmann is an exception).

Not flexible: Few languages offer much parameterization of cands or they only have limited support for
subroutines. For example, Tecan’s subroutines daltaw for a dynamic choice of which wells to pifgefrom.
Limited feedback handling: Feedback handling tends to be limited to verypééntases that only have a few
possible responses. For more complex cases, ti¢ opbrator will likely need to generate a newystcaind
manually start it, even if the decision about wisado next is a simple deterministic matter.

Not expressive: User-defined variables and subroutines are vergdd in their form and type for all previous
languages.

Not especially intelligent: Although most languages perform a certain amofimtilidation, few are able to relieve
the user of specifying parameters and tasks whielolbwvious when the context is considered.

7 Keywords that would serve as search label for information retrieval

Deliverable D3.5

SEVENTH FRAMEWORK
PROGRAMME

e Not portable: Scripts written for a particular robot setup canipe run on another robot without extensive
adaptation.

Innovation

Our system manages to gracefully combine low-lewel high-level commands, making both types avadlaithe user.
The system also implements a uniform format foadedchange, so that data can be just as easibctedi from a database
as being supplied by the user. Furthermore, rafaté enformation is tracked in detail and made labdé to each command.
This has two positive consequences. First, the-leigbl commands are able to make many more ingitigecisions
without the user needing to specify the detailsgfample, the command to run the thermal cyclea pfate can
automatically transfer the plate to the thermalaySecond, since fewer parameters and low-lem@insands need to be
specified by the user, the scripts are more epsilted between labs.

2. Implementation
The components of the system are illustrated ifdhewing diagram.

Settings
i
Data Command Compiled Robot
Robot Info || and Compiler and Compiler Robot
Datab _w» Command » Annotated > Script
Lozl Tree Tree
Commands [

On the left side, we have the input to the sysigameral settings supplied by the user, configunatiformation about the
target robot, a database supplying information abmisubstances and plates used in experimemts bst of commands
for execution on the robot. The information neettedxecute the commands is pooled together andsepted as a
complete data tree. The data tree is then passbd tbmmand compiler, producing a new tree of level commands and
information useful for troubleshooting. Finallyetlow-level commands are transformed into a forttnat can be executed
on the target robot.

3. Results

Examples of input and output

Definitions of a substance and a plate are shows ineY AML format. (YAML is a plain text format fostoring objects in
a programming language. It is similar to XML, buich more concise. A link to more information carfdnend in the
References section.) The substance named SEQUENGE& aGype of DNA with the given sequence. Theepl2215 is
defined with a specific plate model and barcode.

substances:
SEQUENCE_01: I'dna
sequence: TATAACGTTACTGGTTTCATGAATTCTTGTTAATTCAGTAAATTTTC

plates:
E2215:
model: D-BSSE 96 Well Costar
barcode: 059662E2215

The next diagram shows examples of a plate modglitien, the specification of a pipette devicewdni, and the
specification of two command handlers for aspiraad dispense.

plateModels:
D-BSSE 96 Well PCR Plate: { rows: 8, cols: 12, volume: 200 ul }

devices:
- llroboliq.labs.bsse.PipetteDevice

commandHandlers:
- !!roboliq.commands.pipette.AspirateCmdHandler
- !lroboliq.commands.pipette.DispenseCmdHandler

Deliverable D3.5

SEVENTH FRAMEWORK
PROGRAMME

The following scheme demonstrates a simple “pipettenmand excerpted from a larger command ligtaisfers 5ul of
liquid from the plate with ID “P1” and well AO1 tihe plate with ID “P4”, well C03.

- !pipette
src: P1(A01)
dest: P4(C03)
volume: 5 ul

Once the above command has been passed througbrtimand compiler, an expanded and annotated tpgedsiced.
The annotation command with automatic documentatimha list of events can be seen here:

output:
- command: !pipette
src: P1(A01)
dest: P4 (C03)
volume: 5 ul
doc: pipette 5ul of water from P1(A01) to P4 (C03)

events:
- P1(A01): !rem {volume: 5e-6}
- P4(C03): !add {src: P1(A01l), volume: 5e-6}

Further down in the annotated tree we find the level commands which will be translated by the talmmpiler. Here for
example we see the low-level “aspirate” commancdereta specific tip and liquid handling policy hdeen chosen.

children:

- command: !aspirate
items:
- tip: TIP1

well: P1(A01)
volume: 5e-6
policy: Robeliq Water Dry 1000

Core classes in source code

At the core of the language is a library writteraidava-compatible language called Scala. The aigécts which the
library utilizes and manipulates are substancqsids, vessel contents, vessels, plates, and labwadels. The
corresponding classes can be found in the soudepa “roboliq.core” and they are described next.

Substances: We have two primary categories of substancesidi&jand powders. A liquid has a volume and capipetted
(see SubstanceLiquid). Powders are specified inumité. Currently there are two powder subclasSebstanceDna and
SubstanceOther.

Liquids: The Liquid represents one or more solvents cairtgizero or more solutes. A Liquid representsrétios of its
contents and is therefore independent of volumey. Aixture with the same ratios is considered téheesame liquid, so a
particular liquid can be present in multiple vesselowever, the class does not interface well Withother classes; it is
currently being redesigned to properly represeigan a manner similar to VesselContent, and béllused in the next
release.

Vessel contents: The vessel's contents are represented by Vessel@oThis is similar to the description of ligsidbove,
except that absolute amounts are used insteadia$,rand the contents are specific to a particutasel.

Vessels: A vessel is an object which can contain substsmmemore precisely has VesselContent. Therevardinds of
vessels: PlateWell and Tube. Also of interest ésghorly-named Well2, which represents a vesseal wessel holder. A
PlateWell is automatically also a Well2, wheredaihe doesn't have Well2 information until it hagihlaced on a rack.

Vessel holders: Conceptually, there are two kinds of holdersplates, which have wells built into them, and 2ks
which can accommodate removable tubes. Currentyasgume that the tubes on a rack will not changaegithe
execution of a protocol, so we use Plate for basdes.

Labware models: Every piece of labware is considered to be ataimt® of a labware model, as follows:

Deliverable D3.5

SEVENTH FRAMEWORK
PROGRAMME

e ATipis aninstance of a TipModel
e A Plate is an instance of a PlateModel
e A Tube is an instance of a TubeModel

Sate and events: “State” refers to the properties of an objectathtan change over time, and an object's statenafion
represents the cumulative effect of events. Statefdand StateMap are interfaces to the state abédicts in the system.
There are two concrete implementations, an immatRiobotState and a mutable StateBuilder. Events Aawpdate
method to update the object's state.

Databases: The term "database" is used in a broad senseienean a large set of data which can be quesiddbThere
are two "databases" in roboliq.

e BeanBase: holds the YAML JavaBeans which get redcbim files.
e ObjBase: holds instantiations of the objects remlifor executing a protocol, and also holds a nfdpeoinitial
state of those objects.

Commands: Command data is contained in a CmdBean. The whitch actually handles the command processing & in
class which inherits from CmdHandler.

Command evaluation

There are two phases to the evaluation of a comniametheck phase gathers all variables which will be needed for its
execution from the ObjBase. A command may needtai several kinds of information: objects, objstetes, object
settings. Thénandle phase translates the command into a list of subcommandskens. Tokens are used by the robot-
specific translator to generate its scripts.

When a command is checked, it may find that 1)atiahformation is available which it needs or Bjye preprocessing
needs to be performed.

Missing information includes things like the locatiwhere a plate should be placed on the benclthwigw plates to use
when new plates are required, or which of sevéeinhocyclers to use if more than one is availatster getting a list of
missing information, the processors (Processor)myao find sensible defaults. The remaining valugust be chosen by
the user. Once that is done, the commands candoegsed again, now with the complete informatidn se

Levels of command token abstraction

Command trees go through several levels of proegsstarting at the most abstract level L4 and mgsging down to
concrete low-level robot instructions at LO.

e L4: not all parameters need to be specified if digsecan be chosen.
e L3:tokens have all L4 parameters specified.

Translation L3 to L2: here is where the bulk ofidim making can be performed. All well locatioreed to be made
explicit rather than referring to liquids or all Neeof a plate.

e L2:tokens have access to extended configuratidrstate information. The tokens at this level aogerconcise
than the L1 commands, but they are state-dependent.

e L1:tokens do not have access to RobotState infiiomal he idea is to have the command fully spediby its
parameters. They should be as simple as possiblelar to make the cross-platform translators &fous robot
platforms as simple as possible.

Translation L1 to LO: performed by a translatorttivas designed for a specific robot platform.

e LO: concrete tokens for the target robot.

Deliverable D3.5

SEVENTH FRAMEWORK
PROGRAMME

4. Conclusions

The target audience for our robot control systeffeidi from that of the original RoboEase languageetbped at the
Weizmann Institute. That language was intendedhéble biologists to create scripts for implemengingtocols on the
robot. In contrast, the system developed by ETHZiimarily intended to be used as a tool by higeeel software or
experienced programmers, while still permitting gienscripting by less sophisticated users. Thisghaf direction came
about due to the need for producing complex, flexderipts, which stands in opposition to the nieeldave a simple
language for biological users. After observing tmaist scripts written by biologists only contairedingle command, we
concluded that a graphical user interface coultebserve their use case, and by allowing for neoraplexity in the
language itself, a much larger range of applicaticould be addressed.

The resulting system for generating scripts isegfiéxible without being steeped in complexitycéin be either controlled
via plain text files or via direct library callspa@ it can cull the data need for commands (suavagable plates and
substances) from the protocol tree or from a da@bReferring back to the properties we listedhaibhtroduction, the
system is high-level, flexible, expressive, anelildent. The capacity for handling feedback is@ng work (not

originally planned for in Annex I, but an additiémaquirement for quality control and automaticoefcorrection methods),
but we have not achieved results better than aiystems yet. And lastly, portability has signifitgiamproved upon
beyond previous languages, as a natural resulveéif parameters and low-level commands needing gpbcified by the
user, but more work may be able to provide furtbrances.

5. References
e Scala:http://www.scala-lang.org/
e YAML: http://www.yaml.org/
e A secure location for the source code needs teebermiined. This will be established before theewavi

6. Abbreviations

List all abbreviations used in the document arranged alphabetically.

DNA Deoxyribon Nucleic Acid

PCR Polymerase Chain Reaction
YML Yet Another Multicolumn Layout
XML Extensible Markup Language

