

Deliverable Dx.x

Funding Scheme: THEME [ICT-2007.8.0] [FET Open]

Paving the Way for Future Emerging DNA-based Technologies: Computer-Aided Design and Manufacturing of DNA libraries

Grant Agreement number: 265505

Project acronym: CADMAD

Deliverable number: D4.7

Deliverable name: Prototype DNA editor that monitors accuracy of self operation

Contractual Date ¹ of Delivery to the CEC: M24	
Actual Date of Delivery to the CEC:	M25
Author(s) ² : Tuval Ben-Yehezkel	
Participant(s) ³ : WEIZMANN	
Work Package: WP4	
Security ⁴ : Pub	
Nature⁵: P	
Version ⁶ : 0.0	
Total number of pages:	

⁵ R (Report): the deliverables consists in a document reporting the results of interest. P (Prototype): the deliverable is actually consisting in a physical prototype, whose location and functionalities are described in the submitted document (however, the actual deliverable must be available for inspection and/or audit in the indicated place)
P (Prototype): the deliverable is actually consisting in a physical prototype, whose location and functionalities are described in the submitted document (however, the actual deliverable must be available for inspection and/or audit in the indicated place)

D (Demonstrator): the deliverable is a software program, a device or a physical set-up aimed to demonstrate a concept and described in the submitted document (however, the actual deliverable must be available for inspection and/or audit in the indicated place)

O (Other): the deliverable described in the submitted document can not be classified as one of the above (e.g. specification, tools, tests, etc.)

¹ As specified in Annex I

² i.e. name of the person(s) responsible for the preparation of the document

³ Short name of partner(s) responsible for the deliverable

⁴ The Technical Annex of the project provides a list of deliverables to be submitted, with the following classification level:

Pub - Public document; No restrictions on access; may be given freely to any interested party or published openly on the web, provided the author and source are mentioned and the content is not altered.

Rest - Restricted circulation list (including Commission Project Officer). This circulation list will be designated in agreement with the source project. May not be given to persons or bodies not listed.

Int - Internal circulation within project (and Commission Project Officer). The deliverable cannot be disclosed to any third party outside the project.

Two digits separated by a dot: <u>The first digit</u> is 0 for draft, 1 for project approved document, 2 or more for further revisions (e.g. in case of non acceptance by the Commission) requiring explicit approval by the project itself;

The second digit is a number indicating minor changes to the document not requiring an explicit approval by the project.

Deliverable Dx.x

Abstract

After two years of work developing CADMAD technology we are ready for editing of partner DNA libraries. The following deliverable is a prototype DNA editor that can perform DNA editing projects and additionally execute self monitoring operations to gauge its accuracy. We deliver this accomplishment both on a liquid handling robot and on a microfluidic electro-wetting cartridge. The prototypes will be delivered through two full demonstrations to reviewers and CADMAD partners during the review meeting on the 21st of March.

Keywords7:

Prototype, demonstration, robot, electro-wetting device

Introduction

- a. Aim / Objectives
 - To demonstrate the robotic and Microfluidic prototype DNA editors
- b. State of the Art We know of no automated and fully integrated DNA editing systems in the art
- c. Innovation The prototype is a significant step towards establishing off-the-shelf DNA editors

<u>2.</u> Implementation

Two independent programs will run, one on the robotic liquid handling robot and one on ALL's electro-wetting based Microfluidic device. Both programs will demonstrate real scripts that we use in DNA editing. The robot will run a program for self monitoring and the Microfluidic device will run a CPA DNA editing program.

3. Results

Will be presented in the demonstration

⁷ Keywords that would serve as search label for information retrieval